EN
2025-10-11

霉菌毒素在家禽生产中的潜在经济与环境影响


11.jpg

霉菌毒素是天然产生的有毒化合物,常见于污染动物饲料。虽然霉菌毒素对牲畜健康的影响已有广泛研究,但量化其经济与环境综合影响的系统性研究仍显不足。本研究通过整合荟萃分析与生命周期评价(LCA)方法,评估霉菌毒素污染饲料对肉鸡生产造成的潜在经济与环境后果——这一全球性问题。以欧洲比荷卢地区典型肉鸡养殖场为模型,我们发现当禽类摄入两种及以上受欧盟监管的霉菌毒素(脱氧雪腐镰刀菌烯醇、玉米赤霉烯酮、伏马毒素B1、赭曲霉毒素A及T-2/HT-2毒素)污染的饲料时,饲料利用效率显著降低10.8%(p<0.05)。对于10万只规模的养殖场,此类损失意味着每年需额外投入400吨饲料,成本增加约20万欧元。为评估饲料霉菌污染的环境影响,研究分析了包括全球变暖潜势、资源消耗、生态毒性、富营养化、酸化、臭氧层耗竭及电离辐射等19类环境足迹指标。LCA结果表明所有环境影响类别均呈加剧趋势:因饲料增产及磷氮排泄增加,碳上升8.5%,全球变暖潜势、酸化与富营养化影响显著增强。本研究证实,解决小麦、玉米和大豆等饲料作物的霉菌毒素污染问题,对实现全球可持续、低碳且盈利的家禽养殖具有重要意义。

• 本研究结合荟萃分析与生命周期评价法,系统评估霉菌毒素对家禽养殖的经济与环境影响。

• 霉菌毒素污染会降低饲料效率,导致生产成本上升与资源消耗增加。

• 生命周期评价显示,因饲料效率下降,肉鸡生产的碳增加8.5%。

• 霉菌毒素加剧氮磷排泄,进而强化富营养化与酸化效应。

• 研究结果强调需重新评估现行霉菌毒素限量标准,以减轻家禽养殖的经济与环境负担。

1.jpg

图1.图片摘要

2.jpg

图2.肉鸡生产系统“从摇篮到出栏”生存周期评估(LCA)的工艺流程和系统边界。该图概述了关键组成部分:肉鸡系统的投入(饲料、添加剂和能量)、动物育种、肉鸡生产(饲养、小型/大型操作、加工)和副产品管理(淘汰母鸡、鸡舍和粪便再利用或处理)。箭头代表物质和能量在系统中的流动。

3.jpg

图3.Meta分析和生存周期评价(LCA)在本研究中的整合示意图。采用荟萃分析法量化霉菌毒素对肉鸡生产性能的影响。这些性能的变化,然后被用来调整生存周期库存(LCI)的输入,包括饲料,肥料,水和排放数据。随后,使用Sustell进行LCA建模™软件模拟环境影响。最后的整合使受污染和未受污染的饲料系统能够进行比较评价。

4.jpg

图4.随机效应模型森林图,展示了饲喂自然受到多种霉菌毒素污染、且污染水平低于欧盟指导值的肉鸡的饲料转化率(FCR)。数据标记和黑色水平线分别代表每个研究以及相应的95%置信区间。每个绿色方框的大小与研究的权重成正比(即每个研究对整体效应大小的贡献比(饲喂未受污染饲料的肉鸡)相比,霉例)。黄色钻石表示与对照组菌毒素对肉鸡FCR的整体影响。结果显示,饲喂受污染饲料的鸟类的FCR显著增加(p=0.0456)。FCR值的增加通常表示饲料利用效率的降低。

Mycotoxins are naturally occurring toxic compounds that frequently contaminate animal feeds. While the effects of mycotoxins on livestock health are extensively studied, comprehensive research quantifying their combined economic and environmental impacts remains limited. This study addresses the research gap by integrating meta-analysis and life cycle assessment (LCA) to evaluate the potential economic and environmental consequences of broiler production using mycotoxin-contaminated feeds, a widespread issue globally. Using a representative broiler farm in the Benelux region of Europe as a model, we observed a 10.8 % reduction in feed utilization efficiency (p < 0.05) when birds consumed feeds contaminated with two or more EU-regulated mycotoxins (deoxynivalenol, zearalenone, fumonisin B1, ochratoxin A, and T-2/HT-2 toxin). For 100,000 birds, this inefficiency translated to 400 t of additional feed annually, costing around €200,000. In order to evaluate the environmental impacts of feed mycotoxin contamination, a comprehensive set of 19 environmental footprint categories was analyzed, including global warming potential, resource use, ecotoxicity, eutrophication, acidification, ozone depletion, and ionizing radiation. The LCA results revealed increased impacts across all categories, with an 8.5 % rise in carbon footprint and significant increases in global warming potential, acidification, and eutrophication due to heightened feed production as well as phosphorus and nitrogen excretion. This study shows that addressing mycotoxin contamination in feed crops such as wheat, maize, and soybean is important for achieving sustainable, low-carbon, and profitable poultry production globally.

This study combines meta-analysis and LCA to assess mycotoxins' economic and environmental impacts in poultry.

Mycotoxin contamination reduces feed efficiency, raising costs and resource use.

LCA shows an 8.5 % rise in broiler production's carbon footprint due to feed inefficiencies。

Mycotoxins increase nitrogen and phosphorus excretion, exacerbating eutrophication and acidification.

Findings highlight the need to re-evaluate current mycotoxin limits to reduce economic and environmental burdens in poultry production.